

	
	

		
			So... you'll need the app to do that

			devRant on iOS & Android lets you do all the things like
				++ or -- rants, post your own rants and comment on others' rants. You can also set
				up your profile. Get it now!
			

			
				
					
					
				

			

		

		
			Free Swag!

			Get a free stress ball if a rant you post gets 750 ++'s
			

			

			Learn More
			*Some restrictions apply, click "Learn More"

		

		
			Settings

				Enable Dark Theme
	Logout
	Delete Account

		

		
			More

				Post a Rant
	Settings
	Log Out
	Log In

		

		
			Verify Your Email

			In order to vote, comment or post rants, you need to confirm your email address.
				You should have received a welcome email with a confirm link when you signed up. If you can't find the email, click the button below.
			

			Resend Email
		

		
		
			New Post
	
			
				
					
						

						Rant/Story

										
					
						

						Joke/Meme

					
					
						

						Question

					
					
					
						

						devRant

					
					
						

						Random

					
				

			

		
		
				
		
			Reason for Downvote?

				Not for me
	Repost
	Offensive/Spam
	Cancel

		

		
			Rant

			
				
					
					Your rant must be between 6 and 5,000 characters

					
						5000

						
						Attach img/gif
						

					

				

				
					
					

					Post
				

			

		

		
			Edit Rant

			
				
					
					Your rant must be between 6 and 5,000 characters

					
						5000

						
						Attach img/gif
						

					

				

				
					
					

					Save Changes
				

			

		

		
			Comment

			
				
					
					Your comment must be between 6 and 500 characters

					
						1000

						
						Attach img/gif
						

					

				

				
					Post
				

			

		

		
			Edit Comment

			
				
					
					Your comment must be between 6 and 500 characters

					
						1000

						
						
						

					

				

				
					Save Changes
				

			

		

		
			Join devRant

			Vote and comment on others' rants. Post your own. Build your custom avatar.

			
				
					
					!

					

					Must be a valid email address

				

				
					
					!

					

					Username already taken

				

				
					
					!

					

					Must be over 6 characters

					Sign Up
					
						 Keep me logged in
					

				

			

			By clicking "Sign Up", you agree to the Terms of Service
				& Privacy Policy. FYI we never show your email to other members.
			

			Already on devRant?

			Login
		

		
			Profile Details

			Tell us a little about yourself

			
				
					
					

					
				

				
					
					

					
				

				
					
					

				

				
					
					

				

				
					
					

					Done!
				

			

		

		
			Login

			You know the deal

			
				
					
					!

					

					Email address already registered

				

				
					
					!

					

					Email and password do not match

					Login
					
					
						 Keep me logged in
					

				

			

			Forgot Password? | Signup

		

		
			Forgot?

			It happens to the best of us. If you still need help, email info@devrant.io

			
				
					
					!

					

					No account with that email address

				

				Send Reset Email
			

			Login | Signup

		

	

	

	
		
			
				
				
				
			

			

		
			Rant Feed
	Top Rants
	Stories
	Collabs
				
				
					
						
							

							

							
							
						

						Search

					

					
				

			

	

	
		
			Login
			Sign Up
		

	

	
		
			
				
					
						
						13

						
					

				

				
					
						
							dmonkey
							3y

						

						Ok now I'm gonna tell you about my "Databases 2" exam. This is gonna be long.

I'd like to know if DB designers actually have this workflow. I'm gonna "challenge" the reader, but I'm not playing smartass. The mistakes I point out here are MY mistakes.

So, in my uni there's this course, "Databases 2" ("Databases 1" is relational algebra and theoretical stuff), which consist in one exercise: design a SQL database.

We get the description of a system. Almost a two pages pdf. Of course it could be anything. Here I'm going to pretend the project is a YouTube clone (it's one of the practice exercises).

We start designing a ER diagram that describes the system. It must be fucking accurate: e.g. if we describe a "view" as a relationship between the entities User and Video, it MUST have at least another attribute, e.g. the datetime, even if the description doesn't say it. The official reason?

"The ER relationship describes a set of couples. You can not have two elements equal, thus if you don't put any attribute, it means that any user could watch a video only once. So you must put at least something else."

Do you get my point? In this phase we're not even talking about a "database", this is an analysis phase.

Then we describe the type dictionary. So far so good, we just have to specify the type of any attribute.

And now... Constraints.

Oh my god the constraints. We have to describe every fucking constraint of our system. In FIRST ORDER LOGIC. Every entity is a set, and Entity(e) means that an element e belongs to the set Entity. "A user must leave a feedback after he saw a video" becomes like

For all u,v,dv,df,f (User(u) and Video(v) and View(u, v, dv) and feedback(u, v, f)) ---> dv < df

provided that dv and df are the datetimes of the view and the feedback creation (it is clear in the exercise, here seems kinda cryptic)

Of course only some of the constraints are explicitly described. This one, for example, was not in the text. If you fail to mention any "hidden" constraint, you lose a lot of points. Same thing if you not describe it correctly.

Now it's time for use cases.

You start with the usual stickman diagram. So far so good.

Then you have to describe their main functions.

In first order logic. Yes.

So, if you got the point, you may think that the following is correct to get "the average amount of feedback values on a single video" (1 to 5, like the old YT).

(let's say that feedback is a relationship with attribute between User and Video

getAv(Video v): int

 Let be F = { va | feedback(v, u, va) } for any User u

 Let av = (sum forall f in F) / | F |

 return av

But nope, there's an error here. Can you spot it (I didn't)?

F is a set. Sets do not have duplicates! So, the F set will lose some feedback values! I can not define that as a simple set!

It has to be a set of couples, like (v, u), where v is the value and u the user; this way we can have duplicate feedback values in our set.

This concludes the analysis phase. Now, the design.

Well we just refactor everything we have done until now. Is-a relations become relationships, many-to-many relationships get an "association entity" between them, nothing new.

We write down on paper every SQL statement to build any table, entity or not. We write down every possible primary key or foreign key. The constraint that are not natively satisfied by SQL and/or foreign keys become triggers, and so on.

This exam is considered the true nightmare at our department. I just love it.

Now my question is, do actually DB designers follow this workflow? Or is this just a bloody hard training in Pai Mei style?

					

					
						
							random

							tm

							dbs

							sql

						

						
							Favorite
						

					

				

			

		

		

	

	
		
			Ranter

			
				
					

					
						dmonkey

						
							2309

							
						

					

				
			

		

		
			Join devRant

							
				Do all the things like
				++ or -- rants, post your own rants, comment on others' rants and build your customized dev avatar

				Sign Up
			

		

		
			Pipeless API

			
				
				From the creators of devRant, Pipeless lets you power real-time personalized recommendations and activity feeds using a simple API

				Learn More
			

		

		
	

	
		
			Comments

		

		
				
				
					
					5

					
				

				
					
						
							

							
								hitko

								
									3178

									
								

							

						
						3y

					

					This practice is only used when migrating or redesigning an existing enterprise system in order to preserve functionality and ensure data consistency. The chance of you coming across it outside of study is about 0, unless you end up as a codemonkey for some large corporation and need to implement such specifications.

See, projects simply aren't designed like that any more. If I go to your example where you're dealing with video views and ratings: these two won't be in the same database as users and videos. There won't be any constraints. They'll get pushed to some "data hose", aggregated, and archived. Maybe the sistem will periodically prune views and ratings for deleted users and videos, but they probably won't even bother, since there's no identifying data there.

					
						
						

					

				

				

				
	
				
					
					0

					
				

				
					
						
							

							
								Benutzername

								
									775

									
								

							

						
						3y

					

					🤔

					
						
						

					

				

				

				
	
				
					
					1

					
				

				
					
						
							

							
								dmonkey

								
									2309

									
								

							

						
						3y

					

					@hitko Then I wonder, how does db design works nowdays? Is there any formal practice or is it just "pen, paper and experience"?

Of course I suppose it depends on the domain, but you said that in a situation like the one I mentioned "videos, feedbacks and users" would be separate. What influences such decision?

					
						
						

					

				

				

				
	
				
					
					1

					
				

				
					
						
							

							
								hitko

								
									3178

									
								

							

						
						3y

					

					@dmonkey There are still tools like you've described for designing entities and relationships, but you start from the other end, focusing on the way some data will be consumed and produced rather than on the data itself.

For example:

You define User, Video, and View. Then you check who will produce and consume each of these: users and videos will be produced and consumed by an application connected to the database. But views will be produced by some kind of logger, which might or might not be a part of the same application, and they won't be consumed directly. Instead, application will only consume them in some aggregated form, e.g. as total amount of views per video, or as an index where it can quickly check whether a user has seen given video at least once. Then you check which constraints are absolutely necessary: if you delete a user, you have to delete their videos, but that doesn't affect the fact that someone once watched some video, so there's no need for constraints there.

					
						
						

					

				

				

				
	
				
					
					0

					
				

				
					
						
							

							
								hitko

								
									3178

									
								

							

						
						3y

					

					@hitko Moving on, you can see that:

- logger only needs a key from user and video

- view is only created by logger

- view doesn't have to be deleted when linked user or video is deleted

- no entity depends on view

- view is only consumed by aggregator

- aggregator doesn't consume any other entity along with view (it doesn't perform a join while aggregating views)

This makes 'logger -> view -> aggregator' a "black box", i.e. what's inside doesn't affect our data structure and relationships / constraints, and nothing that happens outside affects views after they've been created.

					
						
						

					

				

				

				
	
				
					
					0

					
				

				
					
						
							

							
								dmonkey

								
									2309

									
								

							

						
						3y

					

					@hitko I see, thank you for sharing. This is gonna be useful

					
						
						

					

				

				

				

		

	

	
	
		
		
			Related Rants

			
					
						
							
								

								
									adbo

									5

								

							

							I hope they know what they're doing!

						
					
	
						
							
								

								
									FMashiro

									10

								

							

							So apparently this is an official company in the UK

						
					
	
						
							
								

								
									TheKillingSpree

									8

								

							

							If you don't know SQL, then just mention NoSQL in your CV.

						
					

			

		

		
			
		
		
			

 		Company
	About
	News
	Swag Store
	Free Swag
	devDucks
	Contact

 		Community
	Rules
	Projects
	Bug Repo
	Cartoons
	Podcasts
	Facebook
	Twitter

 	

 devRant © 2021 Hexical Labs LLC

 Privacy Policy | Terms of Service

	
		

	

	
		
			
			
		

		Add Comment
	

