Join devRant
Do all the things like
++ or -- rants, post your own rants, comment on others' rants and build your customized dev avatar
Sign Up
Pipeless API
From the creators of devRant, Pipeless lets you power real-time personalized recommendations and activity feeds using a simple API
Learn More
Search - "equal plus"
-
After an hour of debugging, realised that I wrote =+ instead of +=.
I will just to go in a corner and cry for a minute. brb guys.9 -
The GET /users endpoint will return a page of the first 13 users by default.
To request other pages, add |-separated querystring with the limit and offset, as roman numerals enclosed in double quotation marks. Response status is always equal to 200, plus the total count of the resource, or zero when there's an error.
You can include an array of friends of the user in the result by setting the request header "friends" to the base64-encoded value of the single white pixel png.
Other metadata is not included by default in responses, but can be requested by appending ?meta.json to any endpoint, which will return an xml response.
If you want to update the user's profile picture, you can request an OAuth token per fax machine, followed by a pigeon POST capsule containing a filename and a rolled up Polaroid picture. The status code attached to the return postal dove will be the decimal ASCII code for a happy smiley on success, and a sad smiley if any field fails form validation.
-- Every single external REST API I've ever worked with.7 -
POSTMORTEM
"4096 bit ~ 96 hours is what he said.
IDK why, but when he took the challenge, he posted that it'd take 36 hours"
As @cbsa wrote, and nitwhiz wrote "but the statement was that op's i3 did it in 11 hours. So there must be a result already, which can be verified?"
I added time because I was in the middle of a port involving ArbFloat so I could get arbitrary precision. I had a crude desmos graph doing projections on what I'd already factored in order to get an idea of how long it'd take to do larger
bit lengths
@p100sch speculated on the walked back time, and overstating the rig capabilities. Instead I spent a lot of time trying to get it 'just-so'.
Worse, because I had to resort to "Decimal" in python (and am currently experimenting with the same in Julia), both of which are immutable types, the GC was taking > 25% of the cpu time.
Performancewise, the numbers I cited in the actual thread, as of this time:
largest product factored was 32bit, 1855526741 * 2163967087, took 1116.111s in python.
Julia build used a slightly different method, & managed to factor a 27 bit number, 103147223 * 88789957 in 20.9s,
but this wasn't typical.
What surprised me was the variability. One bit length could take 100s or a couple thousand seconds even, and a product that was 1-2 bits longer could return a result in under a minute, sometimes in seconds.
This started cropping up, ironically, right after I posted the thread, whats a man to do?
So I started trying a bunch of things, some of which worked. Shameless as I am, I accepted the challenge. Things weren't perfect but it was going well enough. At that point I hadn't slept in 30~ hours so when I thought I had it I let it run and went to bed. 5 AM comes, I check the program. Still calculating, and way overshot. Fuuuuuuccc...
So here we are now and it's say to safe the worlds not gonna burn if I explain it seeing as it doesn't work, or at least only some of the time.
Others people, much smarter than me, mentioned it may be a means of finding more secure pairs, and maybe so, I'm not familiar enough to know.
For everyone that followed, commented, those who contributed, even the doubters who kept a sanity check on this without whom this would have been an even bigger embarassement, and the people with their pins and tactical dots, thanks.
So here it is.
A few assumptions first.
Assuming p = the product,
a = some prime,
b = another prime,
and r = a/b (where a is smaller than b)
w = 1/sqrt(p)
(also experimented with w = 1/sqrt(p)*2 but I kept overshooting my a very small margin)
x = a/p
y = b/p
1. for every two numbers, there is a ratio (r) that you can search for among the decimals, starting at 1.0, counting down. You can use this to find the original factors e.x. p*r=n, p/n=m (assuming the product has only two factors), instead of having to do a sieve.
2. You don't need the first number you find to be the precise value of a factor (we're doing floating point math), a large subset of decimal values for the value of a or b will naturally 'fall' into the value of a (or b) + some fractional number, which is lost. Some of you will object, "But if thats wrong, your result will be wrong!" but hear me out.
3. You round for the first factor 'found', and from there, you take the result and do p/a to get b. If 'a' is actually a factor of p, then mod(b, 1) == 0, and then naturally, a*b SHOULD equal p.
If not, you throw out both numbers, rinse and repeat.
Now I knew this this could be faster. Realized the finer the representation, the less important the fractional digits further right in the number were, it was just a matter of how much precision I could AFFORD to lose and still get an accurate result for r*p=a.
Fast forward, lot of experimentation, was hitting a lot of worst case time complexities, where the most significant digits had a bunch of zeroes in front of them so starting at 1.0 was a no go in many situations. Started looking and realized
I didn't NEED the ratio of a/b, I just needed the ratio of a to p.
Intuitively it made sense, but starting at 1.0 was blowing up the calculation time, and this made it so much worse.
I realized if I could start at r=1/sqrt(p) instead, and that because of certain properties, the fractional result of this, r, would ALWAYS be 1. close to one of the factors fractional value of n/p, and 2. it looked like it was guaranteed that r=1/sqrt(p) would ALWAYS be less than at least one of the primes, putting a bound on worst case.
The final result in executable pseudo code (python lol) looks something like the above variables plus
while w >= 0.0:
if (p / round(w*p)) % 1 == 0:
x = round(w*p)
y = p / round(w*p)
if x*y == p:
print("factors found!")
print(x)
print(y)
break
w = w + i
Still working but if anyone sees obvious problems I'd LOVE to hear about it.38 -
Wanted to live outside the US. Was dating a Korean girl who moved back to Korea and was like why the hell not, let's go.
Worked at an American company that had a Korean office, so i thought it'd be easy mode. Took a working vacation to that office and interviewed. Brain froze on basic algorithms stuff - binary search. Failed to understand a logic question. But oddly enough, did well communicating with Korean developers with limited English knowledge.
Director talks to me at the end of the day, tells me they're looking for someone more senior. I bombed it, not mad.
...
Then he tells me he has a friend at one of the largest companies in Korea and that he'll be there to talk to me in two hours.
Dafuq
Chat with the dude. Supposedly, the larger company culture blows, but he has a little haven of badass developers and is known throughout the company for being an effective team builder. We talk for 90 minutes, and he days he'll hire me. Take a short online test to make sure I'm not a derp. Four months later, living in Korea and working, alas, sans girlfriend.
Been a year now. Ends up the company culture eventually crushed my boss. He was moved off the project, and then the project was scrapped. Yet they're starting a new project with the same group plus more because logic.
Today accepted an offer at a smaller company for a salary equal to my current salary plus bonus. Also, vidya gaems yayy.
I have got to have the silliest luck5 -
math be like:
"Addition (often signified by the plus symbol "+") is one of the four basic operations of arithmetic; the others are subtraction, multiplication and division. The addition of two whole numbers is the total amount of those values combined. For example, in the adjacent picture, there is a combination of three apples and two apples together, making a total of five apples. This observation is equivalent to the mathematical expression "3 + 2 = 5" i.e., "3 add 2 is equal to 5".
Besides counting items, addition can also be defined on other types of numbers, such as integers, real numbers and complex numbers. This is part of arithmetic, a branch of mathematics. In algebra, another area of mathematics, addition can be performed on abstract objects such as vectors and matrices.
Addition has several important properties. It is commutative, meaning that order does not matter, and it is associative, meaning that when one adds more than two numbers, the order in which addition is performed does not matter (see Summation). Repeated addition of 1 is the same as counting; addition of 0 does not change a number. Addition also obeys predictable rules concerning related operations such as subtraction and multiplication.
Performing addition is one of the simplest numerical tasks. Addition of very small numbers is accessible to toddlers; the most basic task, 1 + 1, can be performed by infants as young as five months and even some members of other animal species. In primary education, students are taught to add numbers in the decimal system, starting with single digits and progressively tackling more difficult problems. Mechanical aids range from the ancient abacus to the modern computer, where research on the most efficient implementations of addition continues to this day."
And you think like .. easy, but then you turn the page:17 -
Guyz let hack this
Here is the tea
A house wife forgot her bank 'ATM PIN' which is a four digit number, but luckily she remembered some hints on how to recall this 'PIN'
Here are some of the clues
(1) The 1st digit is half of the 2nd
(2) The sum of the 2nd and 3rd is 10
(3) The 4th is equal to the 2nd plus 1
(4) The sum of all the digits is 23
What is the ATM PIN ?3